Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a }}{ }^{\text {Da-Qi Wang }}{ }^{\text {b }}$ and Qing-Jun Shen ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.025$
$w R$ factor $=0.070$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis($\mu-N$-acetyl- N-phenylglycinato)bis[(N-acetyl- N-phenylglycinato)(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ lanthanum(III)] dihydrate

In the title complex, $\left[\mathrm{La}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{6}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{La}^{\text {III }}$ atoms are bridged by two terdentate and two bidentate carboxylate groups with an inversion centre between the two $\mathrm{La}^{\mathrm{III}}$ ions. Each La atom is nine-coordinated by two N atoms of 1,10 -phenanthroline and seven O atoms belonging to N -acetyl- N-phenylglycine molecules, and exhibits distorted tricapped trigonal prismatic geometry. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title complex, (I) (Fig. 1), contains one dinuclear lanthanum/phenanthroline/ N-acetyl- N-phenylglycinate complex and two uncoordinated water molecules. Each lanthanum ion is coordinated by one 1,10-phenanthroline $\left(L_{1}\right)$ ligand via atoms N4 and N5 (Table 1), one chelating bidentate carboxylate group of an N-phenyl- N-acetylglycine (L_{2}) ligand via O7 and O8, two bridging bidentate carboxylate groups of L_{2} via $\mathrm{O5}^{\mathrm{i}}$ (see Table 1 for symmetry code) and O4, and one bridging terdentate carboxylate group of L_{2} via $\mathrm{O} 1^{\mathrm{i}}$ and chelating terdentate carboxytate groups of L_{2} via O 1 and O 2 .

Overall, the coordination geometry around La is that of a distorted tricapped trigonal prism, with the capping positions occupied by atoms N 5 of L_{1} and O 1 and O 7 of two L_{2} ligands. The two La ions are connected by four L_{2} ligands via two bidentate and two terdentate carboxylate bridges with an inversion centre between the two La ions. The average of the bridging bidentate $\mathrm{La}-\mathrm{O}$ bonds $(2.452 \AA)$ is slightly shorter than that of the bridging terdentate $\mathrm{La}-\mathrm{O}$ bonds $(2.467 \AA)$, which in turn is shorter than the average of the chelating terdentate $\mathrm{La}-\mathrm{O}$ bonds $(2.584 \AA)$.

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

The crystal packing of (I), showing the $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bonded interactions as dashed lines (all H atoms and the water molecules have been omitted for clarity).

The $\mathrm{La}-\mathrm{O}$ bonds in (I) are shorter than the equivalent bonds in the related compound bis(1,10-phenanthroline)-tris(trans-2,3-dimethylacrylato)lanthanum(III) (Lu et al., 2001), where the corresponding $\mathrm{La}-\mathrm{O}$ bridging bidentate, $\mathrm{La}-\mathrm{O}$ bridging terdentate, and $\mathrm{La}-\mathrm{O}$ chelating terdentate distances are $2.473,2.474$ and $2.661 \AA$, respectively. The other bond lengths and angles in (I) are unexceptional.

The water O atom in (I) does not coordinate to La but participates in intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) which stabilize the crystal packing of (I) (Fig. 2).

Experimental

$\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and $L_{1}(1 \mathrm{mmol})$ were dissolved in anhydrous ethanol $(20 \mathrm{ml})$. To this solution, an aqueous mixture (30 ml) of $L_{2}(2 \mathrm{mmol})$ and $\mathrm{NaOH}(2 \mathrm{mmol})$ was added dropwise at 313 K . The mixture was stirred for 4 h and about half of the solvent was evaporated in a rotary vacuum evaporator at the same temperature. The resulting solution was filtered and left to stand in air for about 20 d. Large yellow block-shaped crystals of (I) were obtained (m.p. $531.5 \mathrm{~K})$. Elemental analysis found: C 55.13 , H 4.32, N 7.52%; calculated for $\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{La}_{2} \mathrm{~N}_{10} \mathrm{O}_{20}$: C 55.21, H 4.41, N 7.66\%.

Crystal data
$\left[\mathrm{La}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{6}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$-. $2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1827.40$
Triclinic, $P \overline{1}$
$a=11.777$ (3) £
$b=13.574$ (3) \AA
$c=14.114$ (3) \AA
$\alpha=65.372(2)^{\circ}$
$\beta=86.194(3)^{\circ}$
$\gamma=81.600(3)^{\circ}$
$Z=1$
$D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7895 reflections
$\theta=2.3-28.3^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.45 \times 0.32 \times 0.18 \mathrm{~mm}$
$V=2029.0(8) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.633, T_{\text {max }}=0.824$
10710 measured reflections

$$
\begin{aligned}
& 7083 \text { independent reflections } \\
& 6303 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.014 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-11 \rightarrow 14 \\
& k=-15 \rightarrow 16 \\
& l=-13 \rightarrow 16 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0402 P)^{2}\right. \\
& \quad+1.0763 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=1.15 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.070$
$S=1.00$
7083 reflections
529 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected bond distances (\AA).

$\mathrm{La} 1-\mathrm{O} 4$	$2.431(2)$	$\mathrm{La} 1-\mathrm{O} 1$	$2.5762(19)$
$\mathrm{La} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.4672(19)$	$\mathrm{La} 1-\mathrm{N} 4$	$2.658(2)$
$\mathrm{La} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.474(2)$	$\mathrm{La} 1-\mathrm{N} 5$	$2.674(2)$
$\mathrm{La} 1-\mathrm{O} 8$	$2.513(2)$	$\mathrm{La} 1-\mathrm{O} 2$	$2.675(2)$
$\mathrm{La} 1-\mathrm{O} 7$	$2.573(2)$	$\mathrm{La} 1 \cdots \mathrm{La} 1^{\mathrm{i}}$	$4.0167(9)$

Symmetry code: (i) $2-x,-y, 2-z$.

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O10-H1 $\cdots \mathrm{O}^{\text {iii }}$	$0.912(10)$	$1.960(14)$	$2.858(5)$	$168(3)$
O10-H2 $\mathrm{O}^{\text {iii }}$	$0.910(10)$	$1.927(12)$	$2.836(5)$	$178(4)$

Symmetry codes: (ii) $x-1, y, z-1$; (iii) $x-1, y, z$.

The water H atoms were located in a difference map and the $\mathrm{O}-\mathrm{H}$ distances were restrained to $0.90(1) \AA$; the $U_{\text {iso }}(\mathrm{H})$ values were allowed to refine. All other H atoms were placed in idealized posi-

metal-organic papers

tions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak in the difference map is $1.57 \AA$ from atom C35.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Lu, W.-M., Wu, B. \& Wang, L.-N. (2001). Chem. J. Chin. Univ. 22, 535538.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

